Axonal changes in spinal cord injured patients distal to the site of injury.
نویسندگان
چکیده
It is generally assumed that the peripheral nervous system remains intact following a spinal injury. Accordingly, the electrical thresholds of motor axons in a peripheral nerve below the lesion should be similar to those in intact subjects. Yet in attempts to enter the common peroneal nerve with microelectrodes in 24 quadriplegic or paraplegic individuals it was often found that electrical stimulation over or within the nerve failed to elicit contractions in the pre-tibial flexors. To investigate whether consistent changes in axonal physiology occurred distal to the site of injury in patients with spinal cord injury (SCI), motor nerve excitability was formally tested in 15 of these patients. Threshold tracking techniques were used to measure axonal excitability parameters (stimulus-response curves, strength-duration properties, threshold electrotonus, a current-threshold relationship and the recovery cycle) of motor axons in the median and common peroneal nerves. In these patients motor axons were uniformly of high threshold and consequently, stimulus-response curves were shifted to the right. In some SCI patients, axons were completely inexcitable. Amplitudes of compound motor action potentials were reduced, consistent with axonal loss and strength-duration time constant was significantly reduced in SCI patients (SCI 0.13 +/- 0.02 ms, controls 0.43 +/- 0.02 ms, mean +/- SE, P < 0.0001). Excitability changes were more prominent the more clinically severe the injury, with progressive deterioration over time since the original injury. While compression and traction sustained during the original injury or subsequent hospital rehabilitation may contribute in part to some of these changes, it is difficult to attribute these findings solely to such processes. Changes in axonal structure and ion channel function, but perhaps more critically decentralization and consequent inactivity, are likely to underlie the complex changes observed in axonal excitability in SCI patients.
منابع مشابه
The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملOMENTAL GRAFT APPLICABILITY IN EXPERIMENTALLY INDUCED SPINAL CORD COMPRESSION IN RATS
One of the most important factors responsible for axonal degeneration following spinal cord trauma is ischemia produced by cord compression. Previous studies have revealed that omental transposition upon the injured site of the spinal cord could be beneficial in the induction of partial improvement of neuroelectrical and motor function in laboratory animals. The purpose of this study is to...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملThermostabilized chondroitinase ABC Promotes Neuroprotection after Contusion Spinal Cord Injury
Background: Chondroitinase ABC (cABC), due to its loosening impact on the extracellular matrix scaffold, has been used to enhance regeneration of injured axonal tracts after spinal cord injury (SCI). However, cABC thermal instability at physiological temperature has limited its clinical application. The disaccharide trehalose has been shown to increase the stability of cABC in body temperature....
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملEFFECTS OF CIS APRIDE ON CONS TIPATION DUE TO SPINAL CORD INJURY: REPORT OF FIVE WARFARE SPINAL CORD INJURED PATIENTS
Five warfare spinal cord injured patients with intractable constipation are described. Treatment with cisapride (4 x 10 mg daily) was undertaken. The agent cisapride significantly reduced the oral-anal transit time from 25.2 days to 14.4 days. It also improved other subjective complaints of these patients markedly. No side effects were seen during the trial.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 130 Pt 4 شماره
صفحات -
تاریخ انتشار 2007